176. Photochemistry of 2-Allyl-3-oxo-2,3-dihydro-1H-pyrrole-2-carboxylates

by Michael Beyer, Ramin Ghaffari-Tabrizi¹), Michael Jung and Paul Margaretha* Institut für Organische Chemie, Universität, M.-L.-King-Platz 6, D-2000 Hamburg 13

(1.VIII.84)

Summary

On acetone-sensitized irradiation the title compounds **3a-c** are converted to 2-allyl-3-hydroxy-1*H*-pyrrole-2-carboxylates **4** in reasonable yields.

In contrast to 4-oxa- and 4-thia-2-cyclopentenones, the corresponding aza-analogues, 1,2-dihydro-3H-pyrrol-3-ones 1, do not undergo the typical intermolecular photochemical enone reactions, *e.g.* cyclodimerization or cycloaddition to olefins. Electron transfer from the amine to an excited carbonyl molecule is observed when trying to use ketones as sensitizers for such reactions (*Scheme 1*) [1] [2].

We have synthesized several such aza-enones 3 bearing an allyl group at position 2 by alkylation of the easily accessible 3-hydroxy-1*H*-pyrrole-2-carboxylates 2 with allyl bromide in the presence of NaH (*Scheme 2*) to investigate intramolecular light-induced interactions between the enone system and the additional C=C bond.

¹) Taken in part from the Ph.D. Thesis of R.G.-T., University of Hamburg, 1984.

		Table.	Spectroscopic Data of 2c, 2e, 3 and 4		
Compound ^a)	UV [nm (log ε)] (CH ₃ CN)	IR [cm ⁻¹] (CCl ₄)	¹ H-NMR [ppm] (400 MHz, CDCl ₃)	¹³ C-NMR [ppm] (100.83 MHz)	MS (70 eV)
2c	263 (4.18)	3450, 1690, 1630, 1540	 6.58 and 5.76 (AB, J = 3.0, 2H); 5.92 (m, 1H); 5.03 (m, 2H); 4.69 (d, 2H); 4.33 (q, 2H); 1.31 (t, 3H) 		195 (M ⁺), 149
2e	277 (4.11)	3300, 1690, 1630, 1570	4.32 (q, 2H); 3.62 (s, 3H); 2.07 (s, 3H); 1.87 (s, 3H); 1.33 (t, 3H)	163 (s); 153 (s); 134 (s); 105 (s); 103 (s); 60 (t); 32, 15, 10, 7 (q)	197 (M ⁺), <i>151</i>
За	309 (3.95)	1720, 1650 ^b)	8.07 and 5.64 (<i>AB</i> , <i>J</i> = 3.5, 2H); 5.72 (<i>m</i> , 1H); 5.22 (<i>m</i> , 2H); 4.27 (<i>q</i> , 2H); 2.75 (<i>m</i> , 2H); 1.28 (<i>t</i> , 3H)	I	195 (M ⁺)
3b ^c)	327 (3.99)	1730, 1670	7.85 and 5.06 (<i>AB</i> , <i>J</i> = 3.5, 2H); 5.63 (<i>m</i> , 1H); 5.13 (<i>m</i> , 2H); 4.23 (<i>q</i> , 2H); 3.07 (<i>s</i> , 3H); 2.94 (<i>m</i> , 2H); 1.24 (<i>t</i> , 3H)	I	209 (M ⁺), 28
3c	328 (4.02)	1740, 1680	7.93 and 5.11 (<i>AB</i> , <i>J</i> = 3.5, 2H); 5.88 (<i>m</i> , 1H); 5.53 (<i>m</i> , 1H); 5.35 (<i>m</i> , 2H); 5.14 (<i>m</i> , 2H); 4.21 (<i>q</i> , 2H); 3.89 (<i>m</i> , 2H); 2.95 (<i>m</i> , 2H); 1.26 (<i>t</i> , 3H)	I	235 (M ⁺), 41
PE	320 (4.13)	1720, 1680	5.70 (<i>m</i> , 1H); 5.16 (<i>m</i> , 2H); 4.23 (<i>q</i> , 2H); 2.70 (<i>m</i> , 2H); 2.15 (<i>s</i> , 3H); 1.63 (<i>s</i> , 3H); 1.26 (<i>t</i> , 3H)	195 (s); 175 (s); 168 (s); 132 (d); 119 (t); 107 (s); 73 (s); 62 (t); 40 (t); 15, 14, 6 (q)	223 $(M^{+}),$ 43

c é ŝ C. ΰ P19

1536

Helvetica Chimica Acta – Vol. 67 (1984)

36	336 (4.15)	1730, 1670	5.44 (m. 1H); 5.07 (m, 2H); 4.22 (q, 2H); 3.00 (s, 3H); 2.90 (m, 2H); 2.17 (s, 3H); 1.69 (s, 3H); 1.26 (t, 3H)	193 (s); 175 (s); 167 (s); 132 (d); 119 (t); 104 (s); 76 (s); 62 (t); 37 (t); 30, 14, 12, 7 (q)	237 164	(M ⁺),
3f	320 (3.96)	1710, 1680	5.71 (<i>m</i> , 1H); 5.14 (<i>m</i> , 2H); 4.20 (<i>q</i> , 2H); 2.92 (<i>m</i> , 2H); 2.42 (<i>m</i> , 2H); 2.14 (<i>m</i> , 2H); 1.69 (<i>m</i> , 4H); 1.26 (<i>t</i> , 3H)	ı	249 176	(M ⁺),
3g	336 (4.02)	1730, 1670	5.47 (<i>m</i> , 1H); 5.07 (<i>m</i> , 2H); 4.23 (<i>q</i> , 2H); 2.96 (<i>s</i> , 3H); 2.91 (<i>m</i> , 2H); 2.46-2.21 (<i>m</i> , 4H); 1.72 (<i>m</i> , 4H); 1.29 (<i>t</i> , 3H)	T	263 190	(M ⁺),
4a	265 (4.13)	1700, 1640, 1580	6.38 (s, 1H); 5.95 (m, 1H); 5.05 (m, 2H); 4.37 (q, 2H); 3.16 (d, 2H); 1.38 (t, 3H)	I	195 122	(<i>M</i> ⁺),
4	266 (4.11)	1700, 1650, 1590	6.37 (s, 1H); 5.95 (m, 1H); 5.07 (m, 2H); 4.37 (q, 2H); 3.71 (s, 3H); 3.14 (d, 2H); 1.36 (t, 3H)	I	209 163	(M ⁺),
4	265 (4.08)	1700, 1650, 1590	6.46 (s, 1H); 5.95 (m, 2H); 5.10 (m, 4H); 4.68 (d, 2H); 4.38 (q, 2H); 3.18 (d, 2H); 1.38 (t, 3H)	Ι	235 189	(M ⁺),
a)	All new compounds gave satisfacto	ory elemental analyses.				

In KBr. cf. [8].

<u>د</u> د

Helvetica Chimica Acta - Vol. 67 (1984)

1537

Direct ($\lambda > 280$ nm) irradiation of compounds 3 leads only to slow decomposition of starting material. Herein, the photochemical behaviour of 3 parallels that of azaenones 1. Acetone-sensitized irradiation of 3a-c gives one new photoproduct, 4a-c, respectively. Enones 3d-g are photostable under these conditions. This divergent reactivity of excited acetone towards 1 (electron transfer from the amine) and 3 (energy transfer for the amine) is apparently due to the difference in ease of oxidation of 1 and 3 (it can be assumed that the oxidation potentials of the aza-enones differ by a similar value as ethyl amine and ethyl aminoacetate, *i.e.* by approx. 0.4-0.5 V [3]). Obviously the oxidation of 3 by triplet acetone is less favourable than the observed energy transfer.

From the spectroscopic data summarized in the *Table*, photoproducts 4 are easily identified as 3-hydroxy-4-allyl-1*H*-pyrrole-2-carboxylates. The formation of 4 from 3 can be explained by the reaction sequence given in *Scheme 3*. Herein triplet 3 – formed via energy transfer from triplet acetone – undergoes the first step of an intramolecular [2 + 2] cycloaddition to afford the biradical 5. Cleavage of a C–C bond gives the biradical 7 which then tautomerizes to product 4. Although 5-allyl-2-cyclopentenones are known to photoisomerize to tricyclooctanones [4] the diradical 5 does not undergo a ring closure to the corresponding azatricyclooctanone 6. This is probably due to the ethoxycarbonyl group which facilitates the formation of 7 from 5 by stabilizing the new biradical. For a better understanding of such reactions, it is thus necessary to investigate the photochemical behaviour of carbocyclic-, 4-oxa- and 4-thia-2-cyclopentenones exhibiting the same structural features as compounds 3, *i.e.* bearing an ethoxycarbonyl and an allyl group on C(5). This work is now in progress.

Financial support by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged.

Experimental Part

Starting Materials. Carboxylates 2a [5], 2b [5], 2d [6], 2f [6], and 2g [7] were synthesized according to the references indicated; 2c (oil, 40%) and 2e (m.p. 35°, 20%) were prepared in analogy to [5] and [7], respectively.

Ethyl 2-Allyl-3-oxo-2,3-dihydro-1 H-*pyrrole-2-carboxylates* (3). A solution of 3 mmol 2 in 10 ml benzene was added to a stirred suspension of 3 mmol NaH in 20 ml benzene under N₂. After warming to 60° for 1 h, a solution of 9 mmol allylbromide in 20 ml benzene was added dropwise. The mixture was then refluxed for 4 h, cooled, filtered and the solvent evaporated. Chromatography (SiO₂, AcOEt/hexane 2:1) afforded: **3a** (m.p. 106°, 65%), **3b** (oil, [8]), **3c** (oil, 44%), **3d** (oil, 75%), **3e** (oil, 85%), **3f** (m.p. 78°, 85%) and **3g** (oil, 80%).

Photolyses. These were performed using a 250-W Hg-lamp and a *Pyrex* filter. The degree of conversion was monitored by TLC (SiO₂, CH₂Cl₂).

Ethyl 2-Allyl-3-hydroxy-4-1 H-*pyrrole-2-carboxylates* **4**. Thoroughly degassed 10^{-1} M solutions of 3 in 10 ml acetone were irradiated for 6 h. Evaporation of the solvent and chromatography (SiO₂, CH₂Cl₂) afforded: **4a** (oil, 50%), **4b** (oil, 43%) and **4c** (oil, 39%).

REFERENCES

[1] R. Ghaffari-Tabrizi & P. Margaretha, Helv. Chim. Acta 65, 1029 (1982).

- [2] E. Anklam, R. Ghaffari-Tabrizi, H. Hombrecher, S. Lau & P. Margaretha, Helv. Chim. Acta 67, 1402 (1984).
- [3] C.K. Mann, Analyt. Chem. 36, 2424 (1964).
- [4] G. Gowda & T.B.H. McMurry, J. Chem. Soc., Perkin Trans. 1 1980, 1516.
- [5] T. Momose, T. Tanaka, T. Yokota, N. Nagamoto & K. Yamada, Chem. Pharm. Bull. 26, 2224 (1978).
- [6] H. Bauer & G. Pfeiffer, Liebigs Ann. Chem. 1976, 383.
- [7] H. Bauer & G. Pfeiffer, Liebigs Ann. Chem. 1980, 564.
- [8] T. Momose, T. Tanaka, T. Yokota, N. Nagamoto & K. Yamada, Chem. Pharm. Bull. 26, 3521 (1978).